Free Executive Summary # Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 3 Subcommittee on Acute Exposure Guideline Levels, Committee on Toxicology, National Research Council ISBN: 0-309-08883-6, 516 pages, 6 x 9, paperback (2003) This free executive summary is provided by the National Academies as part of our mission to educate the world on issues of science, engineering, and health. If you are interested in reading the full book, please visit us online at http://www.nap.edu/catalog/10672.html . You may browse and search the full, authoritative version for free; you may also purchase a print or electronic version of the book. If you have questions or just want more information about the books published by the National Academies Press, please contact our customer service department toll-free at 888-624-8373. This report reviews documents on acute exposure guideline levels (AEGLs) for nerve agents GA (tabun), GB (sarin), GD (soman), GD, and VX, sulfur mustard, diborane, and methyl isocyanate. The documents were developed by the National Advisory Committee on Acute Exposure Guideline Levels for Hazardous Chemicals (NAC). The subcommittee concludes that the AEGLs developed in those documents are scientifically valid conclusions based on data reviewed by NAC and are consistent with the NRC reports on developing acute exposure guideline levels. #### This executive summary plus thousands more available at www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution INTRODUCTION 1 #### Introduction This report is the third volume in the series Acute Exposure Guideline Levels for Selected Airborne Chemicals. In the Bhopal disaster of 1984, approximately 2,000 residents living near a chemical plant were killed and 20,000 more suffered irreversible damage to their eyes and lungs following accidental release of methyl isocyanate. The toll was particularly high because the community had little idea what chemicals were being used at the plant, how dangerous they might be, and what steps to take in case of emergency. This tragedy served to focus international attention on the need for governments to identify hazardous substances and to assist local communities in planning how to deal with emergency exposures. In the United States, the Superfund Amendments and Reauthorization Act (SARA) of 1986 required that the U.S. Environmental Protection Agency (EPA) identify extremely hazardous substances (EHSs) and, in cooperation with the Federal Emergency Management Agency and the Department of Transportation, assist Local Emergency Planning Committees (LEPCs) by providing guidance for conducting health-hazard assessments for the development of emergency-response plans for sites where EHSs are produced, stored, transported, or used. SARA also required that the Agency for Toxic Substances and Disease Registry (ATSDR) determine whether chemical substances identified at hazardous waste sites or in the environment present a public-health concern. As a first step in assisting the LEPCs, EPA identified approximately 400 EHSs largely on the basis of their "immediately dangerous to life and health" (IDLH) values developed by the National Institute for Occupational Safety and Health (NIOSH) in experimental animals. Although several public and private groups, such as the Occupational Safety and Health Administration (OSHA) and the American Conference of Governmental Industrial Hygienists (ACGIH), have established exposure limits for some substances and some exposures (e.g., workplace or ambient air quality), these limits are not easily or directly translated into emergency exposure limits for exposures at high levels but of short duration, usually less than 1 h, and only once in a lifetime for the general population, which includes infants, children, the elderly, and persons with diseases, such as asthma, heart disease, or lung disease. The National Research Council (NRC) Committee on Toxicology (COT) has published many reports on emergency exposure guidance levels and spacecraft maximum allowable concentrations for chemicals used by the Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA) (NRC 1968, 1972, 1984a,b,c,d, 1985a,b, 1986a,b, 1987, 1988, 1994, 1996a,b, 2000). COT has also published guidelines for developing emergency exposure guidance levels for military personnel and for astronauts (NRC 1986b, 1992). Because of COT's experience in recommending emergency exposure levels for short-term exposures, in 1991 EPA and ATSDR requested that COT develop criteria and methods for developing emergency exposure levels for EHSs for the general population. In response to that request, the NRC assigned this project to the COT Subcommittee on Guidelines for Developing Community Emergency Exposure Levels for Hazardous Substances. The report of that subcommittee, Guidelines for Developing Community Emergency Exposure Levels for Hazardous Substances (NRC 1993), provides step-by-step guidance for setting emergency exposure levels for EHSs. Guidance is given on what data are needed, what data are available, how to evaluate the data, and how to present the results. In November 1995, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances (NAC)¹ was established to identify, review, and interpret relevant toxicologic and other scientific data and to develop acute exposure guideline levels (AEGLs) for high- ¹NAC is composed of members from EPA, DOD, many other federal and state agencies, industry, academia, and other organizations. The roster of NAC is shown on page 8. Copyright © National Academy of Sciences. All rights reserved. priority, acutely toxic chemicals. The NRC's previous name for acute exposure levelsCcommunity emergency exposure levels (CEELs)Cwas replaced by the term AEGLs to reflect the broad application of these values to planning, response, and prevention in the community, the workplace, transportation, the military, and the remediation of Superfund sites. Three levels—AEGL-1, AEGL-2, and AEGL-3—are developed for each of five exposure periods (10 min, 30 min, 1 h, 4 h, and 8 h) and are distinguished by varying degrees of severity of toxic effects. The three AEGLs are defined as follows: AEGL-1 is the airborne concentration (expressed as ppm [parts per million] or mg/m³ [milligrams per cubic meter]) of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death. Airborne concentrations below AEGL-1 represent exposure levels that can produce mild and progressively increasing but transient and nondisabling odor, taste, and sensory irritation or certain asymptomatic, nonsensory adverse effects. With increasing airborne concentrations above each AEGL, there is a progressive increase in the likelihood of occurrence and the severity of effects described for each corresponding AEGL. Although the AEGL values represent threshold levels for the general public, including susceptible subpopulations, such as infants, children, the elderly, persons with asthma, and those with other illnesses, it is recognized that individuals, subject to unique or idiosyncratic responses, could experience the effects described at concentrations below the corresponding AEGL. ## SUMMARY OF REPORT ON GUIDELINES FOR DEVELOPING AEGLS As described in the Guidelines for Developing Community Emergency Exposure Levels for Hazardous Substances (NRC 1993) and the NAC guidelines report Standing Operating Procedures on Acute Exposure Guideline Levels for Hazardous Substances (NRC 2001), the first step in establishing AEGLs for a chemical is to collect and review all relevant published and unpublished information available on a chemical. Various types of evidence are assessed in establishing AEGL values for a chemical. These include information from (1) chemical-physical characterizations, (2) structure-activity relationships, (3) in vitro toxicity studies, (4) animal toxicity studies, (5) controlled human studies, (6) observations of humans involved in chemical accidents, and (7) epidemiologic studies. Toxicity data from human studies are most applicable and are used when available in preference to data from animal studies and in vitro studies. Toxicity data from inhalation exposures are most useful for setting AEGLs for airborne chemicals because inhalation is the most likely route of exposure and because extrapolation of data from other routes would lead to additional uncertainty in the AEGL estimate. For most chemicals, actual human toxicity data are not available or critical information on exposure is lacking, so toxicity data from studies conducted in laboratory animals are extrapolated to estimate the potential toxicity in humans. Such extrapolation requires experienced scientific judgment. The toxicity data from animal species most representative of humans in terms of pharmacodynamic and pharmacokinetic properties are used for determining AEGLs. If data are not available on the species that best represents humans, the data from the most sensitive animal species are used to set AEGLs. Uncertainty factors are commonly used when animal data are used to estimate risk levels for humans. The magnitude of uncertainty factors depends on the quality of the animal data used to determine the no-observed-adverse-effect level (NOAEL) and the mode of action of the substance in question. When available, pharmacokinetic data on tissue doses are considered for interspecies extrapolation. For substances that affect several organ systems or have multiple effects, all end points—including reproductive (in both sexes), develop-mental, neurotoxic, respiratory, and other organ-related effects—are evaluated, the most important or most sensitive effect receiving the greatest attention. For carcinogenic chemicals, excess carcinogenic risk is estimated, and the AEGLs corresponding to carcinogenic risks of 1 in $10,000 \, (1\times10^{-4})$, 1 in $100,000 (1 \times 10^{-5})$, and 1 in 1,000,000 (1×10^{-6}) exposed persons are estimated. #### REVIEW OF AEGL REPORTS As NAC began developing chemical-specific AEGL reports, EPA and DOD asked the NRC to review independently the NAC reports for their scientific validity, completeness, and consistency with the NRC guideline reports (NRC 1993; NRC in press). The NRC assigned this project to the COT Subcommittee on Acute Exposure Guideline Levels. The subcommittee has expertise in toxicology, epidemiology, pharmacology, medicine, industrial hygiene, biostatistics, risk assessment, and risk communication. The AEGL draft reports are initially prepared by ad hoc AEGL Development Teams consisting of a chemical manager, two chemical reviewers, and a staff scientist of the NAC contractor—Oak Ridge National Laboratory. The draft documents are then reviewed by NAC and elevated from "draft" to "proposed" status. After the AEGL documents are approved by NAC, they are published in the *Federal Register* for public comment. The reports are then revised by NAC in response to the public comments, elevated from "proposed" to "interim" status, and sent to the NRC Subcommittee on Acute Exposure Guideline Levels for final evaluation. The NRC subcommittee's review of the AEGL reports prepared by NAC and its contractors involves oral and written presentations to the subcommittee by the authors of the reports. The NRC subcommittee provides advice and recommendations for revisions to ensure scientific validity and consistency with the NRC guideline reports (NRC 1993, 2001). The revised reports are presented at subsequent meetings until the subcommittee is satisfied with the reviews. Because of the enormous amount of data presented in the AEGL reports, the NRC subcommittee cannot verify all the data used by NAC. The NRC subcommittee relies on NAC for the accuracy and completeness of the toxicity data cited in the AEGLs reports. This report is the third volume in the series *Acute Exposure Guideline Levels for Selected Airborne Chemicals*. AEGL documents for nerve agents (GA, GB, GD, GF, and VX), sulfur mustard, diborane, and methyl isocyanate are published as an appendix to this report. The subcommittee concludes that the AEGLs developed in those documents are scientifically valid conclusions based on the data reviewed by NAC and are consistent with the NRC guideline reports. AEGL reports for additional chemicals will be presented in subsequent volumes. #### REFERENCES - NRC (National Research Council). 1968. Atmospheric Contaminants in Spacecraft. Washington, DC: National Academy of Sciences. - NRC (National Research Council). 1972. Atmospheric Contaminants in Manned Spacecraft. Washington, DC: National Academy of Sciences. - NRC (National Research Council). 1984a. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 1. Washington, DC: National Academy Press. - NRC (National Research Council). 1984b. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 2. Washington, DC: National Academy Press. - NRC (National Research Council). 1984c. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 3. Washington, DC: National Academy Press. - NRC (National Research Council). 1984d. Toxicity Testing: Strategies to Determine Needs and Priorities. Washington, DC: National Academy Press. - NRC (National Research Council). 1985a. Emergency and Continuous Exposure Guidance Levels for Selected Airborne Contaminants, Vol. 4. Washington, DC: National Academy Press. - NRC (National Research Council). 1985b. Emergency and Continuous Exposure Guidance Levels for Selected Airborne Contaminants, Vol. 5. Washington, DC: National Academy Press. - NRC (National Research Council). 1986a. Emergency and Continuous Exposure Guidance Levels for Selected Airborne Contaminants, Vol. 6. Washington, DC: National Academy Press. - NRC (National Research Council). 1986b. Criteria and Methods for Preparing Emergency Exposure Guidance Level (EEGL), Short-Term Public Emergency Guidance Level (SPEGL), and Continuous Exposure Guidance level (CEGL) Documents. Washington, DC: National Academy Press. - NRC (National Research Council). 1987. Emergency and Continuous Exposure Guidance Levels for Selected Airborne Contaminants, Vol. 7. Washington, DC: National Academy Press. - NRC (National Research Council). 1988. Emergency and Continuous Exposure Guidance Levels for Selected Airborne Contaminants, Vol. 8. Washington, DC: National Academy Press. - NRC (National Research Council). 1992. Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants . Washington, DC: National Academy Press. NRC (National Research Council). 1993. Guidelines for Developing Community Emergency Exposure Levels for Hazardous Substances. Washington, DC: National Academy Press. - NRC (National Research Council). 1994. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Vol. 1. Washington, DC: National Academy Press. - NRC (National Research Council). 1996a. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Vol. 2. Washington, DC: National Academy Press. - NRC (National Research Council). 1996b. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Vol. 3. Washington, DC: National Academy Press. - NRC (National Research Council). 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Vol. 4. Washington, DC: National Academy Press. - NRC (National Research Coiuncil) 2001. Acute Exposure Guideline Levels for Selected Airborne Chemicals. Washington, DC: National Academy Press. - NRC (National Research Council). 2001. Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Airborne Chemicals. Washington, DC: National Academy Press. # About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot I etained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution # Acute Exposure Guideline Levels for Selected Airborne Chemicals VOLUME 3 Subcommittee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES THE NATIONAL ACADEMIES PRESS Washington, D.C. Copyright © National Academy of Sciences. All rights reserved. This executive summary plus thousands more available at http://www.nap.edu #### THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, D.C. 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was supported by Contract Nos. DAMD17-89-C-9086 and DAMD17-99-C-9049 between the National Academy of Sciences and the U.S. Army. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the organizations or agencies that provided support for this project. International Standard Book Number 0-309-08883-6 (Book) International Standard Book Number 0-309-51590-4 (PDF) Additional copies of this report are available from: The National Academies Press 500 Fifth Street, N.W. Box 285 Washington, DC 20055 800–624–6242 202–334–3313 (in the Washington metropolitan area) http://www.nap.edu Copyright 2003 by the National Academy of Sciences. All rights reserved. Printed in the United States of America ### THE NATIONAL ACADEMIES National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M.Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm.A.Wulf is president of the National Academy of Engineering. The **Institute of Medicine** was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V.Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M.Alberts and Dr. Wm.A.Wulf are chair and vice chair, respectively, of the National Research Council www.national-academies.org # SUBCOMMITTEE ON ACUTE EXPOSURE GUIDELINE LEVELS #### Members Daniel Krewski (Chair), University of Ottawa, Ottawa, Ontario, Canada Edward C. Bishop, Parsons Corporation, Fairfax, VA James V. Bruckner, University of Georgia, Athens John Doull, University of Kansas Medical Center, Kansas City Kannan Krishnan, University of Montreal, Canada Stephen U. Lester, Center for Health, Environment and Justice, Falls Church, VA Franz Oesch, University of Mainz, Mainz, Germany Richard B. Schlesinger, Pace University, Pleasantville, NY Calvin C. Willhite, Department of Toxic Substances, State of California, Berkeley Frederik A. De Wolff, Leiden University, Leiden, Netherlands #### Staff Kulbir S. Bakshi, Program Director Kelly Clark, Editor Aida C. Neel, Senior Project Assistant #### COMMITTEE ON TOXICOLOGY #### Members **Bailus Walker, Jr.** (Chair), Howard University Medical Center and American Public Health Association, Washington, D.C. **MELVIN E. ANDERSEN,** Chemical Industry Institute of Toxicology, Centers for Health Research, Research Triangle Park, NC EDWARD C. BISHOP, Parsons Corporation, Fairfax, VA GARY P. CARLSON, Purdue University, West Lafayette, IN JANICE E. CHAMBERS, Mississippi State University, Mississippi State LEONARD CHIAZZE, JR., Georgetown University, Washington, D.C. JUDITH A. GRAHAM, American Chemistry Council, Arlington, VA SIDNEY GREEN, Howard University, Washington, D.C. MERYL KAROL, University of Pittsburgh, Pittsburgh, PA STEPHEN U. LESTER, Center for Health Environment and Justice, Falls Church, VA DAVID H. MOORE, Battelle Memorial Institute, Bel Air, MD CALVIN C. WILLHITE, Department of Toxic Substances, State of California, Berkeley Gerald Wogan, Massachusetts Institute of Technology, Cambridge #### Staff KULBIR S. BAKSHI, Program Director SUSAN N. J. MARTEL, Senior Staff Officer ELLEN K. MANTUS, Senior Staff Officer KELLY CLARK, Assistant Editor AIDA C. NEEL, Senior Project Assistant TAMARA DAWSON, Project Assistant # BOARD ON ENVIRONMENTAL STUDIES AND TOXICOLOGY¹ #### Members GORDON ORIANS (Chair), University of Washington, Seattle JOHN DOULL (Vice Chair), University of Kansas Medical Center, Kansas City DAVID ALLEN, University of Texas, Austin THOMAS BURKE, Johns Hopkins University, Baltimore, MD JUDITH C.CHOW, Desert Research Institute, Reno, NV CHRISTOPHER B. FIELD, Carnegie Institute of Washington, Stanford, CA WILLIAM H. GLAZE, Oregon Health and Science University, Beaverton SHERRI W. GOODMAN, Center for Naval Analyses, Alexandria, VA DANIEL S. GREENBAUM, Health Effects Institute, Cambridge, MA ROGENE HENDERSON, Lovelace Respiratory Research Institute, Albuquerque, NM CAROL HENRY, American Chemistry Council, Arlington, VA ROBERT HUGGETT, Michigan State University, East Lansing BARRY L. JOHNSON Emory University, Atlanta, GA JAMES H. JOHNSON, Howard University, Washington, DC James A. Macmahon, Utah State University, Logan PATRICK V. O'BRIEN, Chevron Research and Technology, Richmond, CA DOROTHY E. PATTON, International Life Sciences Institute, Washington, DC Ann Powers, Pace University School of Law, White Plains, NY Louise M. Ryan, Harvard University, Boston, MA JONATHAN M. SAMET, Johns Hopkins University, Baltimore, MD KIRK SMITH, University of California, Berkeley LISA SPEER, Natural Resources Defense Council, New York, NY G.DAVID TILMAN, University of Minnesota, St. Paul CHRIS G. WHIPPLE, Environ Incorporated, Emeryville, CA LAUREN A. ZEISE, California Environmental Protection Agency, Oakland #### **Senior Staff** JAMES J. REISA, Director DAVID J. POLICANSKY, Associate Director RAYMOND A. WASSEL, Senior Program Director for Environmental Sciences and Engineering KULBIR BAKSHI, Program Director for the Committee on Toxicology ROBERTA M. WEDGE, Program Director for Risk Analysis K.John Holmes, Senior Staff Officer Susan N. J. Martel, Senior Staff Officer SUZANNE VAN DRUNICK, Senior Staff Officer EILEEN N. ABT, Senior Staff Officer ELLEN K. MANTUS, Senior Staff Officer RUTH E. CROSSGROVE, Managing Editor ¹This study was planned, overseen, and supported by the Board on Environmental Studies and Tocipyliogy® National Academy of Sciences. All rights reserved. #### OTHER REPORTS OF THE BOARD ON **ENVIRONMENTAL STUDIES AND** TOXICOLOGY Cumulative Environmental Effects of Alaska North Slope Oil and Gas Development (2003) Estimating the Public Health Benefits of Proposed Air Pollution Regulations (2002) Biosolids Applied to Land: Advancing Standards and Practices (2002) Ecological Dynamics on Yellowstone's Northern Range (2002) The Airliner Cabin Environment and Health of Passengers and Crew (2002) Arsenic in Drinking Water: 2001 Update (2001) Evaluating Vehicle Emissions Inspection and Maintenance Programs (2001) Compensating for Wetland Losses Under the Clean Water Act (2001) A Risk-Management Strategy for PCB-Contaminated Sediments (2001) Acute Exposure Guideline Levels for Selected Airborne Chemicals (3 volumes, 2000-2003) Toxicological Effects of Methylmercury (2000) Strengthening Science at the U.S. Environmental Protection Agency (2000) Scientific Frontiers in Developmental Toxicology and Risk Assessment (2000) Ecological Indicators for the Nation (2000) Modeling Mobile-Source Emissions (2000) Waste Incineration and Public Health (1999) Hormonally Active Agents in the Environment (1999) Research Priorities for Airborne Particulate Matter (4 volumes, 1998–2003) Ozone-Forming Potential of Reformulated Gasoline (1999) Arsenic in Drinking Water (1999) The National Research Council's Committee on Toxicology: The First 50 Years (1997) Carcinogens and Anticarcinogens in the Human Diet (1996) Upstream: Salmon and Society in the Pacific Northwest (1996) Science and the Endangered Species Act (1995) Wetlands: Characteristics and Boundaries (1995) Biologic Markers (5 volumes, 1989–1995) Review of EPA's Environmental Monitoring and Assessment Program (3 volumes, 1994–1995) Science and Judgment in Risk Assessment (1994) Pesticides in the Diets of Infants and Children (1993) Dolphins and the Tuna Industry (1992) Science and the National Parks (1992) Human Exposure Assessment for Airborne Pollutants (1991) Rethinking the Ozone Problem in Urban and Regional Air Pollution (1991) Decline of the Sea Turtles (1990) Copies of these reports may be ordered from The National Academies Press (800) 624-6242 or (202) 334-3313 www.nap.edu Copyright © National Academy of Sciences. All rights reserved. This executive summary plus thousands more available at http://www.nap.edu About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution PREFACE ix #### **Preface** Extremely hazardous substances (EHSs)¹ can be released accidentally as a result of chemical spills, industrial explosions, fires, or accidents involving railroad cars and trucks transporting EHSs. The people in communities surrounding industrial facilities where EHSs are manufactured, used, or stored and in communities along the nation's railways and highways are potentially at risk of being exposed to airborne EHSs during accidental releases. Pursuant to the Superfund Amendments and Reauthorization Act of 1986, the U.S. Environmental Protection Agency (EPA) has identified approximately 400 EHSs on the basis of acute lethality data in rodents. As part of its efforts to develop acute exposure guideline levels for EHSs, EPA and the Agency for Toxic Substances and Disease Registry (ATSDR) in 1991 requested that the National Research Council (NRC) develop guidelines for establishing such levels. In response to that request, the NRC published *Guidelines for Developing Community Emergency Exposure Levels for Hazardous Substances* in 1993. Using the 1993 NRC guidelines report, the National Advisory Committee (NAC) on Acute Exposure Guideline Levels for Hazardous Substances—consisting of members from EPA, the Department of Defense (DOD), the Department of Energy (DOE), the Department of Transportation, other federal and state governments, the chemical industry, ¹As defined Capyright © National-Act of 1986. This executive summary plus thousands more available at http://www.nap.edu retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be PREFACE academia, and other organizations from the private sector—has developed acute exposure guideline levels (AEGLs) for approximately 80 EHSs. In 1998, EPA and DOD requested that the NRC independently review the AEGLs developed by NAC. In response to that request, the NRC organized within its Committee on Toxicology the Subcommittee on Acute Exposure Guideline Levels, which prepared this report. This report is the third volume in the series *Acute Exposure Guideline Levels for Selected Airborne Chemicals*. It reviews the AEGLs for the nerve agents (GA [tabun], GB [sarin], GD [soman], GF, and VX), sulfur mustard, diborane, and methyl isocyanate for scientific accuracy, completeness, and consistency with the NRC guideline reports. This report was reviewed in draft by individuals selected for their diverse perspectives and technical expertise, in accordance with procedures approved by the NRC's Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Mohamed Abou-Donia of Duke University; Janice Chambers of Mississippi State University; and Sidney Green of Howard University. Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations nor did they see the final draft of the report before its release. The review of this report was overseen by David Moore of Battelle Memorial Institute, appointed by the Division on Earth and Life Studies, who was responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution. The subcommittee gratefully acknowledges the valuable assistance provided by the following persons: Roger Garrett (deceased, March 31, 2003), Paul Tobin, and Ernest Falke (all from EPA); George Rusch (Honeywell, Inc.); Po Yung Lu, Claudia Troxel, Robert Young, Carol Forsyth, Dennis Opresko, and Annetta Watson (all from Oak Ridge National Laboratory). Aida Neel was the project assistant. Kelly Clark PREFACE xi edited the report. We are grateful to James J.Reisa, director of the Board on Environmental Studies and Toxicology (BEST), for his helpful comments. The subcommittee particularly acknowledges Kulbir Bakshi, project director for the subcommittee, for bringing the report to completion. Finally, we would like to thank all members of the subcommittee for their expertise and dedicated effort throughout the development of this report. Daniel Krewski, *Chair*Subcommittee on Acute Exposure Guideline Levels Bailus Walker, *Chair*Committee on Toxicology PREFACE xii DEDICATION xiii #### **Dedication** The subcommittee dedicates this series of reports to our late colleague and director of the Acute Exposure Guideline Levels program, Dr. Roger L.Garrett, whose 27 years of distinguished service with the U.S. Environmental Protection Agency in the fields of toxicology and health-risk assessment contributed significantly to scientific knowledge, to the development of the Acute Exposure Guideline Levels program, and to the protection of public health and safety. DEDICATION xiv original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution CONTENTS xv #### **Contents** | Introduction | 1 | |-----------------------------------------------------------------------------------------------------------|-----| | Roster of the National Advisory Committee for Acute Exposure
Guideline Levels for Hazardous Substances | 10 | | Appendixes | | | Nerve Agents GA, GB, GD, GF, and VX: Acute Exposure | 15 | | Guideline Levels | | | Sulfur Mustard: Acute Exposure Guideline Levels | 301 | | Methyl Isocyanate: Acute Exposure Guideline Levels | 384 | | Diborane: Acute Exposure Guideline Levels | 444 | 1 2 3 4 CONTENTS xvi About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution # **Acute Exposure Guideline Levels for Selected Airborne Chemicals** Volume 3